গণিতের সকল সূত্র গণিতের সকল সূত্র গণিতের সকল সূত্র
গণিতের সকল সূত্র গণিতের সকল সূত্র গণিতের সকল সূত্র
1. (a+b)²= a²+2ab+b²
2. (a+b)²= (a-b)²+4ab
3. (a-b)²= a²-2ab+b²
4. (a-b)²= (a+b)²-4ab
5. a² + b²= (a+b)²-2ab.
6. a² + b²= (a-b)²+2ab.
7. a²-b²= (a +b)(a -b)
8. 2(a²+b²)= (a+b)²+(a-b)²
9. 4ab = (a+b)²-(a-b)²
10. ab = {(a+b)/2}²-{(a-b)/2}²
11. (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12. (a+b)³ = a³+3a²b+3ab²+b³
13. (a+b)³ = a³+b³+3ab(a+b)
14. a-b)³= a³-3a²b+3ab²-b³
15. (a-b)³= a³-b³-3ab(a-b)
16. a³+b³= (a+b) (a²-ab+b²)
17. a³+b³= (a+b)³-3ab(a+b)
18. a³-b³ = (a-b) (a²+ab+b²)
19. a³-b³ = (a-b)³+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)
21. 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)
22. (a + b + c)³ = a³ + b³ + c³ + 3 (a + b) (b + c) (c + a)
23. a³ + b³ + c³ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)
24. a3 + b3 + c3 – 3abc =½ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}
25.(x + a) (x + b) = x² + (a + b) x + ab
26. (x + a) (x – b) = x² + (a – b) x – ab
27. (x – a) (x + b) = x² + (b – a) x – ab
28. (x – a) (x – b) = x² – (a + b) x + ab
29. (x+p) (x+q) (x+r) = x³ + (p+q+r) x² + (pq+qr+rp) x +pqr
30. bc (b-c) + ca (c- a) + ab (a - b) = - (b - c) (c- a) (a - b)
31. a² (b- c) + b² (c- a) + c² (a - b) = -(b-c) (c-a) (a - b)
32. a (b² - c²) + b (c² - a²) + c (a² - b²) = (b - c) (c- a) (a - b)
33. a³ (b - c) + b³ (c-a) +c³ (a -b) =- (b-c) (c-a) (a - b)(a + b + c)
34. b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35. (ab + bc+ca) (a+b+c) - abc = (a + b)(b + c) (c+a)
36. (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
আয়তক্ষেত্র
1.আয়তক্ষেত্রের ক্ষেত্রফল = (দৈর্ঘ্য × প্রস্থ) বর্গ একক
2.আয়তক্ষেত্রের পরিসীমা = 2 (দৈর্ঘ্য+প্রস্থ)একক
3.আয়তক্ষেত্রের কর্ণ = √(দৈর্ঘ্য²+প্রস্থ²)একক
4.আয়তক্ষেত্রের দৈর্ঘ্য= ক্ষেত্রফল÷প্রস্ত একক
5.আয়তক্ষেত্রের প্রস্ত= ক্ষেত্রফল÷দৈর্ঘ্য একক
বর্গক্ষেত্র
1.বর্গক্ষেত্রের ক্ষেত্রফল = (যে কোন একটি বাহুর দৈর্ঘ্য)² বর্গ একক
2.বর্গক্ষেত্রের পরিসীমা = 4 × এক বাহুর দৈর্ঘ্য একক
3.বর্গক্ষেত্রের কর্ণ=√2 × এক বাহুর দৈর্ঘ্য একক
4.বর্গক্ষেত্রের বাহু=√ক্ষেত্রফল বা পরিসীমা÷4 একক
ত্রিভূজ
1.সমবাহু ত্রিভূজের ক্ষেত্রফল = √¾×(বাহু)²
2.সমবাহু ত্রিভূজের উচ্চতা = √3/2×(বাহু)
3.বিষমবাহু ত্রিভুজের ক্ষেত্রফল = √s(s-a) (s-b) (s-c)
এখানে a, b, c ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য, s=অর্ধপরিসীমা
★পরিসীমা 2s=(a+b+c)
4সাধারণ ত্রিভূজের ক্ষেত্রফল = ½
(ভূমি×উচ্চতা) বর্গ একক
5.সমকোণী ত্রিভূজের ক্ষেত্রফল = ½(a×b)
এখানে ত্রিভুজের সমকোণ সংলগ্ন বাহুদ্বয় a এবং b.
6.সমদ্বিবাহু ত্রিভূজের ক্ষেত্রফল = 2√4b²-a²/4 এখানে, a= ভূমি; b= অপর বাহু।
7.ত্রিভুজের উচ্চতা = 2(ক্ষেত্রফল/ভূমি)
8.সমকোণী ত্রিভুজের অতিভুজ =√ লম্ব²+ভূমি²
9.লম্ব =√অতিভূজ²-ভূমি²
10.ভূমি = √অতিভূজ²-লম্ব²
11.সমদ্বিবাহু ত্রিভুজের উচ্চতা = √b² - a²/4
এখানে a= ভূমি; b= সমান দুই বাহুর দৈর্ঘ্য।
12.★ত্রিভুজের পরিসীমা=তিন বাহুর সমষ্টি
রম্বস
1.রম্বসের ক্ষেত্রফল = ½× (কর্ণদুইটির গুণফল)
2.রম্বসের পরিসীমা = 4× এক বাহুর দৈর্ঘ্য
সামান্তরিক
1.সামান্তরিকের ক্ষেত্রফল = ভূমি × উচ্চতা =
2.সামান্তরিকের পরিসীমা = 2×(সন্নিহিত বাহুদ্বয়ের সমষ্টি)
ট্রাপিজিয়াম
1. ট্রাপিজিয়ামের ক্ষেত্রফল =½×(সমান্তরাল বাহু দুইটির যােগফল)×উচ্চতা
ঘনক
1.ঘনকের ঘনফল = (যেকোন বাহু)³ ঘন একক
2.ঘনকের সমগ্রতলের ক্ষেত্রফল = 6× বাহু² বর্গ একক
3.ঘনকের কর্ণ = √3×বাহু একক
আয়তঘনক
1.আয়তঘনকের ঘনফল = (দৈৰ্ঘা×প্রস্ত×উচ্চতা) ঘন একক
2.আয়তঘনকের সমগ্রতলের ক্ষেত্রফল = 2(ab + bc + ca) বর্গ একক
[ যেখানে a = দৈর্ঘ্য b = প্রস্ত c = উচ্চতা ]
3.আয়তঘনকের কর্ণ = √a²+b²+c² একক
4. চারি দেওয়ালের ক্ষেত্রফল = 2(দৈর্ঘ্য + প্রস্থ)×উচ্চতা
বৃত্ত
1.বৃত্তের ক্ষেত্রফল = πr²=22/7r² {এখানে π=ধ্রুবক 22/7, বৃত্তের ব্যাসার্ধ= r}
2. বৃত্তের পরিধি = 2πr
3. গোলকের পৃষ্ঠতলের ক্ষেত্রফল = 4πr² বর্গ একক
4. গোলকের আয়তন = 4πr³÷3 ঘন একক
5. h উচ্চতায় তলচ্চেদে উৎপন্ন বৃত্তের ব্যাসার্ধ = √r²-h² একক
6.বৃত্তচাপের দৈর্ঘ্য s=πrθ/180° ,
এখানে θ =কোণ
সমবৃত্তভূমিক সিলিন্ডার / বেলন
সমবৃত্তভূমিক সিলিন্ডারের ভূমির ব্যাসার্ধ r এবং উচ্চতা h আর হেলানো তলের উচ্চতা l হলে,
1.সিলিন্ডারের আয়তন = πr²h
2.সিলিন্ডারের বক্রতলের ক্ষেত্রফল (সিএসএ) = 2πrh।
3.সিলিন্ডারের পৃষ্ঠতলের ক্ষেত্রফল (টিএসএ) = 2πr (h + r)
সমবৃত্তভূমিক কোণক
সমবৃত্তভূমিক ভূমির ব্যাসার্ধ r এবং উচ্চতা h আর হেলানো তলের উচ্চতা l হলে,
1.কোণকের বক্রতলের ক্ষেত্রফল= πrl বর্গ একক
2.কোণকের সমতলের ক্ষেত্রফল= πr(r+l) বর্গ একক
3.কোণকের আয়তন= ⅓πr²h ঘন একক
✮বহুভুজের কর্ণের সংখ্যা= n(n-3)/2
✮বহুভুজের কোণগুলির সমষ্টি=(2n-4)সমকোণ
এখানে n=বাহুর সংখ্যা
★চতুর্ভুজের পরিসীমা=চার বাহুর সমষ্টি
ত্রিকোণমিতির সূত্রাবলীঃ
1. sinθ=लম্ব/অতিভূজ
2. cosθ=ভূমি/অতিভূজ
3. taneθ=लম্ব/ভূমি
4. cotθ=ভূমি/লম্ব
5. secθ=অতিভূজ/ভূমি
6. cosecθ=অতিভূজ/লম্ব
7. sinθ=1/cosecθ, cosecθ=1/sinθ
8. cosθ=1/secθ, secθ=1/cosθ
9. tanθ=1/cotθ, cotθ=1/tanθ
10. sin²θ + cos²θ= 1
11. sin²θ = 1 - cos²θ
12. cos²θ = 1- sin²θ
13. sec²θ - tan²θ = 1
14. sec²θ = 1+ tan²θ
15. tan²θ = sec²θ - 1
16, cosec²θ - cot²θ = 1
17. cosec²θ = cot²θ + 1
18. cot²θ = cosec²θ - 1
2. (a+b)²= (a-b)²+4ab
3. (a-b)²= a²-2ab+b²
4. (a-b)²= (a+b)²-4ab
5. a² + b²= (a+b)²-2ab.
6. a² + b²= (a-b)²+2ab.
7. a²-b²= (a +b)(a -b)
8. 2(a²+b²)= (a+b)²+(a-b)²
9. 4ab = (a+b)²-(a-b)²
10. ab = {(a+b)/2}²-{(a-b)/2}²
11. (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12. (a+b)³ = a³+3a²b+3ab²+b³
13. (a+b)³ = a³+b³+3ab(a+b)
14. a-b)³= a³-3a²b+3ab²-b³
15. (a-b)³= a³-b³-3ab(a-b)
16. a³+b³= (a+b) (a²-ab+b²)
17. a³+b³= (a+b)³-3ab(a+b)
18. a³-b³ = (a-b) (a²+ab+b²)
19. a³-b³ = (a-b)³+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)
21. 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)
22. (a + b + c)³ = a³ + b³ + c³ + 3 (a + b) (b + c) (c + a)
23. a³ + b³ + c³ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)
24. a3 + b3 + c3 – 3abc =½ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}
25.(x + a) (x + b) = x² + (a + b) x + ab
26. (x + a) (x – b) = x² + (a – b) x – ab
27. (x – a) (x + b) = x² + (b – a) x – ab
28. (x – a) (x – b) = x² – (a + b) x + ab
29. (x+p) (x+q) (x+r) = x³ + (p+q+r) x² + (pq+qr+rp) x +pqr
30. bc (b-c) + ca (c- a) + ab (a - b) = - (b - c) (c- a) (a - b)
31. a² (b- c) + b² (c- a) + c² (a - b) = -(b-c) (c-a) (a - b)
32. a (b² - c²) + b (c² - a²) + c (a² - b²) = (b - c) (c- a) (a - b)
33. a³ (b - c) + b³ (c-a) +c³ (a -b) =- (b-c) (c-a) (a - b)(a + b + c)
34. b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35. (ab + bc+ca) (a+b+c) - abc = (a + b)(b + c) (c+a)
36. (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
আয়তক্ষেত্র
1.আয়তক্ষেত্রের ক্ষেত্রফল = (দৈর্ঘ্য × প্রস্থ) বর্গ একক
2.আয়তক্ষেত্রের পরিসীমা = 2 (দৈর্ঘ্য+প্রস্থ)একক
3.আয়তক্ষেত্রের কর্ণ = √(দৈর্ঘ্য²+প্রস্থ²)একক
4.আয়তক্ষেত্রের দৈর্ঘ্য= ক্ষেত্রফল÷প্রস্ত একক
5.আয়তক্ষেত্রের প্রস্ত= ক্ষেত্রফল÷দৈর্ঘ্য একক
বর্গক্ষেত্র
1.বর্গক্ষেত্রের ক্ষেত্রফল = (যে কোন একটি বাহুর দৈর্ঘ্য)² বর্গ একক
2.বর্গক্ষেত্রের পরিসীমা = 4 × এক বাহুর দৈর্ঘ্য একক
3.বর্গক্ষেত্রের কর্ণ=√2 × এক বাহুর দৈর্ঘ্য একক
4.বর্গক্ষেত্রের বাহু=√ক্ষেত্রফল বা পরিসীমা÷4 একক
ত্রিভূজ
1.সমবাহু ত্রিভূজের ক্ষেত্রফল = √¾×(বাহু)²
2.সমবাহু ত্রিভূজের উচ্চতা = √3/2×(বাহু)
3.বিষমবাহু ত্রিভুজের ক্ষেত্রফল = √s(s-a) (s-b) (s-c)
এখানে a, b, c ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য, s=অর্ধপরিসীমা
★পরিসীমা 2s=(a+b+c)
4সাধারণ ত্রিভূজের ক্ষেত্রফল = ½
(ভূমি×উচ্চতা) বর্গ একক
5.সমকোণী ত্রিভূজের ক্ষেত্রফল = ½(a×b)
এখানে ত্রিভুজের সমকোণ সংলগ্ন বাহুদ্বয় a এবং b.
6.সমদ্বিবাহু ত্রিভূজের ক্ষেত্রফল = 2√4b²-a²/4 এখানে, a= ভূমি; b= অপর বাহু।
7.ত্রিভুজের উচ্চতা = 2(ক্ষেত্রফল/ভূমি)
8.সমকোণী ত্রিভুজের অতিভুজ =√ লম্ব²+ভূমি²
9.লম্ব =√অতিভূজ²-ভূমি²
10.ভূমি = √অতিভূজ²-লম্ব²
11.সমদ্বিবাহু ত্রিভুজের উচ্চতা = √b² - a²/4
এখানে a= ভূমি; b= সমান দুই বাহুর দৈর্ঘ্য।
12.★ত্রিভুজের পরিসীমা=তিন বাহুর সমষ্টি
রম্বস
1.রম্বসের ক্ষেত্রফল = ½× (কর্ণদুইটির গুণফল)
2.রম্বসের পরিসীমা = 4× এক বাহুর দৈর্ঘ্য
সামান্তরিক
1.সামান্তরিকের ক্ষেত্রফল = ভূমি × উচ্চতা =
2.সামান্তরিকের পরিসীমা = 2×(সন্নিহিত বাহুদ্বয়ের সমষ্টি)
ট্রাপিজিয়াম
1. ট্রাপিজিয়ামের ক্ষেত্রফল =½×(সমান্তরাল বাহু দুইটির যােগফল)×উচ্চতা
ঘনক
1.ঘনকের ঘনফল = (যেকোন বাহু)³ ঘন একক
2.ঘনকের সমগ্রতলের ক্ষেত্রফল = 6× বাহু² বর্গ একক
3.ঘনকের কর্ণ = √3×বাহু একক
আয়তঘনক
1.আয়তঘনকের ঘনফল = (দৈৰ্ঘা×প্রস্ত×উচ্চতা) ঘন একক
2.আয়তঘনকের সমগ্রতলের ক্ষেত্রফল = 2(ab + bc + ca) বর্গ একক
[ যেখানে a = দৈর্ঘ্য b = প্রস্ত c = উচ্চতা ]
3.আয়তঘনকের কর্ণ = √a²+b²+c² একক
4. চারি দেওয়ালের ক্ষেত্রফল = 2(দৈর্ঘ্য + প্রস্থ)×উচ্চতা
বৃত্ত
1.বৃত্তের ক্ষেত্রফল = πr²=22/7r² {এখানে π=ধ্রুবক 22/7, বৃত্তের ব্যাসার্ধ= r}
2. বৃত্তের পরিধি = 2πr
3. গোলকের পৃষ্ঠতলের ক্ষেত্রফল = 4πr² বর্গ একক
4. গোলকের আয়তন = 4πr³÷3 ঘন একক
5. h উচ্চতায় তলচ্চেদে উৎপন্ন বৃত্তের ব্যাসার্ধ = √r²-h² একক
6.বৃত্তচাপের দৈর্ঘ্য s=πrθ/180° ,
এখানে θ =কোণ
সমবৃত্তভূমিক সিলিন্ডার / বেলন
সমবৃত্তভূমিক সিলিন্ডারের ভূমির ব্যাসার্ধ r এবং উচ্চতা h আর হেলানো তলের উচ্চতা l হলে,
1.সিলিন্ডারের আয়তন = πr²h
2.সিলিন্ডারের বক্রতলের ক্ষেত্রফল (সিএসএ) = 2πrh।
3.সিলিন্ডারের পৃষ্ঠতলের ক্ষেত্রফল (টিএসএ) = 2πr (h + r)
সমবৃত্তভূমিক কোণক
সমবৃত্তভূমিক ভূমির ব্যাসার্ধ r এবং উচ্চতা h আর হেলানো তলের উচ্চতা l হলে,
1.কোণকের বক্রতলের ক্ষেত্রফল= πrl বর্গ একক
2.কোণকের সমতলের ক্ষেত্রফল= πr(r+l) বর্গ একক
3.কোণকের আয়তন= ⅓πr²h ঘন একক
✮বহুভুজের কর্ণের সংখ্যা= n(n-3)/2
✮বহুভুজের কোণগুলির সমষ্টি=(2n-4)সমকোণ
এখানে n=বাহুর সংখ্যা
★চতুর্ভুজের পরিসীমা=চার বাহুর সমষ্টি
ত্রিকোণমিতির সূত্রাবলীঃ
1. sinθ=लম্ব/অতিভূজ
2. cosθ=ভূমি/অতিভূজ
3. taneθ=लম্ব/ভূমি
4. cotθ=ভূমি/লম্ব
5. secθ=অতিভূজ/ভূমি
6. cosecθ=অতিভূজ/লম্ব
7. sinθ=1/cosecθ, cosecθ=1/sinθ
8. cosθ=1/secθ, secθ=1/cosθ
9. tanθ=1/cotθ, cotθ=1/tanθ
10. sin²θ + cos²θ= 1
11. sin²θ = 1 - cos²θ
12. cos²θ = 1- sin²θ
13. sec²θ - tan²θ = 1
14. sec²θ = 1+ tan²θ
15. tan²θ = sec²θ - 1
16, cosec²θ - cot²θ = 1
17. cosec²θ = cot²θ + 1
18. cot²θ = cosec²θ - 1
বিয়ােগের সূত্রাবলি
1. বিয়ােজন-বিয়োজ্য =বিয়োগফল।
2.বিয়ােজন=বিয়ােগফ + বিয়ােজ্য
3.বিয়ােজ্য=বিয়ােজন-বিয়ােগফল
গুণের সূত্রাবলি
1.গুণফল =গুণ্য × গুণক
2.গুণক = গুণফল ÷ গুণ্য
3.গুণ্য= গুণফল ÷ গুণক
ভাগের সূত্রাবলি
নিঃশেষে বিভাজ্য না হলে।
1.ভাজ্য= ভাজক × ভাগফল + ভাগশেষ।
2.ভাজ্য= (ভাজ্য— ভাগশেষ) ÷ ভাগফল।
3.ভাগফল = (ভাজ্য — ভাগশেষ)÷ ভাজক।
*নিঃশেষে বিভাজ্য হলে।
4.ভাজক= ভাজ্য÷ ভাগফল।
5.ভাগফল = ভাজ্য ÷ ভাজক।
6.ভাজ্য = ভাজক × ভাগফল।
ভগ্নাংশের ল.সা.গু ও গ.সা.গু সূত্রাবলী
1.ভগ্নাংশের গ.সা.গু = লবগুলাের গ.সা.গু / হরগুলাের ল.সা.গু
2.ভগ্নাংশের ল.সা.গু =লবগুলাের ল.সা.গু /হরগুলার গ.সা.গু
3.ভগ্নাংশদ্বয়ের গুণফল = ভগ্নাংশদ্বয়ের ল.সা.গু × ভগ্নাংশদ্বয়ের গ.সা.গু.
গড় নির্ণয়
1.গড় = রাশি সমষ্টি /রাশি সংখ্যা
2.রাশির সমষ্টি = গড় ×রাশির সংখ্যা
3.রাশির সংখ্যা = রাশির সমষ্টি ÷ গড়
4.আয়ের গড় = মােট আয়ের পরিমাণ / মােট লােকের সংখ্যা
5.সংখ্যার গড় = সংখ্যাগুলাের যােগফল /সংখ্যার পরিমান বা সংখ্যা
6.ক্রমিক ধারার গড় =শেষ পদ +১ম পদ /2
সুদকষার পরিমান নির্নয়ের সূত্রাবলী
1. সুদ = (সুদের হার×আসল×সময়) ÷১০০
2. সময় = (100× সুদ)÷ (আসল×সুদের হার)
3. সুদের হার = (100×সুদ)÷(আসল×সময়)
4. আসল = (100×সুদ)÷(সময়×সুদের হার)
5. আসল = {100×(সুদ-মূল)}÷(100+সুদের হার×সময় )
6. সুদাসল = আসল + সুদ
7. সুদাসল = আসল ×(1+ সুদের হার)× সময় |[চক্রবৃদ্ধি সুদের ক্ষেত্রে]।
লাভ-ক্ষতির এবং ক্রয়-বিক্রয়ের সূত্রাবলী
1. লাভ = বিক্রয়মূল্য-ক্রয়মূল্য
2.ক্ষতি = ক্রয়মূল্য-বিক্রয়মূল্য
3.ক্রয়মূল্য = বিক্রয়মূল্য-লাভ
অথবা
ক্রয়মূল্য = বিক্রয়মূল্য + ক্ষতি
4.বিক্রয়মূল্য = ক্রয়মূল্য + লাভ
অথবা
বিক্রয়মূল্য = ক্রয়মূল্য-ক্ষতি
1-100 পর্যন্ত মৌলিক সংখ্যামনে রাখার সহজ উপায়ঃ
শর্টকাট :- 44 -22 -322-321
★1থেকে100পর্যন্ত মৌলিক সংখ্যা=25টি
★1থেকে10পর্যন্ত মৌলিক সংখ্যা=4টি 2,3,5,7
★11থেকে20পর্যন্ত মৌলিক সংখ্যা=4টি 11,13,17,19
★21থেকে30পর্যন্ত মৌলিক সংখ্যা=2টি 23,29
★31থেকে40পর্যন্ত মৌলিক সংখ্যা=2টি 31,37
★41থেকে50পর্যন্ত মৌলিক সংখ্যা=3টি 41,43,47
★51থেকে 60পর্যন্ত মৌলিক সংখ্যা=2টি 53,59
★61থেকে70পর্যন্ত মৌলিক সংখ্যা=2টি 61,67
★71থেকে80 পর্যন্ত মৌলিক সংখ্যা=3টি 71,73,79
★81থেকে 90পর্যন্ত মৌলিক সংখ্যা=2টি 83,89
★91থেকে100পর্যন্ত মৌলিক সংখ্যা=1টি 97
1-100 পর্যন্ত মৌলিক সংখ্যা 25 টিঃ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
1-100পর্যন্ত মৌলিক সংখ্যার যোগফল
1060।
1.কোন কিছুর
গতিবেগ= অতিক্রান্ত দূরত্ব/সময়
2.অতিক্রান্ত দূরত্ব = গতিবেগ×সময়
3.সময়= মোট দূরত্ব/বেগ
4.স্রোতের অনুকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ + স্রোতের গতিবেগ।
5.স্রোতের প্রতিকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ - স্রোতের গতিবেগ
সরল সুদ
যদি আসল=P, সময়=T, সুদের হার=R, সুদ-আসল=A হয়, তাহলে
1.সুদের পরিমাণ= PRT/100
2.আসল= 100×সুদ-আসল(A)/100+TR
নৌকার গতি স্রোতের অনুকূলে ঘন্টায় 10 কি.মি. এবং স্রোতের প্রতিকূলে 2 কি.মি.। স্রোতের বেগ কত?
★টেকনিক-
স্রোতের বেগ = (স্রোতের অনুকূলে নৌকার বেগ - স্রোতের প্রতিকূলে নৌকার বেগ) /2
= (10 - 2)/2=
= 4 কি.মি.
একটি নৌকা স্রোতের অনুকূলে ঘন্টায় 8 কি.মি.এবং স্রোতের প্রতিকূলে ঘন্টায় 4 কি.মি.
যায়। নৌকার বেগ কত?
★ টেকনিক-
নৌকার বেগ = (স্রোতের অনুকূলে নৌকার বেগ+স্রোতের প্রতিকূলে নৌকার বেগ)/2
= (8 + 4)/2
=6 কি.মি.
নৌকা ও স্রোতের বেগ ঘন্টায় যথাক্রমে 10 কি.মি. ও 5 কি.মি.। নদীপথে 45 কি.মি. পথ একবার গিয়ে ফিরে আসতে কত সময় লাগবে?
টেকনিক-
★মােট সময় = [(মােট দূরত্ব/ অনুকূলে বেগ) + (মােট দূরত্ব/প্রতিকূলে বেগ)]
উত্তর:স্রোতের অনুকূলে নৌকারবেগ = (10+5) = 15 কি.মি.
স্রোতের প্রতিকূলে নৌকার বেগ = (10-5) = 5কি.মি.
[(45/15) +(45/5)]
= 3+9
=12 ঘন্টা
★সমান্তর ধারার ক্রমিক সংখ্যার যোগফল-
(যখন সংখ্যাটি1 থেকে শুরু)1+2+3+4+......+n হলে এরূপ ধারার সমষ্টি= [n(n+1)/2]
n=শেষ সংখ্যা বা পদ সংখ্যা s=যোগফল
প্রশ্নঃ 1+2+3+....+100 =?
সমাধানঃ[n(n+1)/2]
= [100(100+1)/2]
= 5050
1. বিয়ােজন-বিয়োজ্য =বিয়োগফল।
2.বিয়ােজন=বিয়ােগফ + বিয়ােজ্য
3.বিয়ােজ্য=বিয়ােজন-বিয়ােগফল
গুণের সূত্রাবলি
1.গুণফল =গুণ্য × গুণক
2.গুণক = গুণফল ÷ গুণ্য
3.গুণ্য= গুণফল ÷ গুণক
ভাগের সূত্রাবলি
নিঃশেষে বিভাজ্য না হলে।
1.ভাজ্য= ভাজক × ভাগফল + ভাগশেষ।
2.ভাজ্য= (ভাজ্য— ভাগশেষ) ÷ ভাগফল।
3.ভাগফল = (ভাজ্য — ভাগশেষ)÷ ভাজক।
*নিঃশেষে বিভাজ্য হলে।
4.ভাজক= ভাজ্য÷ ভাগফল।
5.ভাগফল = ভাজ্য ÷ ভাজক।
6.ভাজ্য = ভাজক × ভাগফল।
ভগ্নাংশের ল.সা.গু ও গ.সা.গু সূত্রাবলী
1.ভগ্নাংশের গ.সা.গু = লবগুলাের গ.সা.গু / হরগুলাের ল.সা.গু
2.ভগ্নাংশের ল.সা.গু =লবগুলাের ল.সা.গু /হরগুলার গ.সা.গু
3.ভগ্নাংশদ্বয়ের গুণফল = ভগ্নাংশদ্বয়ের ল.সা.গু × ভগ্নাংশদ্বয়ের গ.সা.গু.
গড় নির্ণয়
1.গড় = রাশি সমষ্টি /রাশি সংখ্যা
2.রাশির সমষ্টি = গড় ×রাশির সংখ্যা
3.রাশির সংখ্যা = রাশির সমষ্টি ÷ গড়
4.আয়ের গড় = মােট আয়ের পরিমাণ / মােট লােকের সংখ্যা
5.সংখ্যার গড় = সংখ্যাগুলাের যােগফল /সংখ্যার পরিমান বা সংখ্যা
6.ক্রমিক ধারার গড় =শেষ পদ +১ম পদ /2
সুদকষার পরিমান নির্নয়ের সূত্রাবলী
1. সুদ = (সুদের হার×আসল×সময়) ÷১০০
2. সময় = (100× সুদ)÷ (আসল×সুদের হার)
3. সুদের হার = (100×সুদ)÷(আসল×সময়)
4. আসল = (100×সুদ)÷(সময়×সুদের হার)
5. আসল = {100×(সুদ-মূল)}÷(100+সুদের হার×সময় )
6. সুদাসল = আসল + সুদ
7. সুদাসল = আসল ×(1+ সুদের হার)× সময় |[চক্রবৃদ্ধি সুদের ক্ষেত্রে]।
লাভ-ক্ষতির এবং ক্রয়-বিক্রয়ের সূত্রাবলী
1. লাভ = বিক্রয়মূল্য-ক্রয়মূল্য
2.ক্ষতি = ক্রয়মূল্য-বিক্রয়মূল্য
3.ক্রয়মূল্য = বিক্রয়মূল্য-লাভ
অথবা
ক্রয়মূল্য = বিক্রয়মূল্য + ক্ষতি
4.বিক্রয়মূল্য = ক্রয়মূল্য + লাভ
অথবা
বিক্রয়মূল্য = ক্রয়মূল্য-ক্ষতি
1-100 পর্যন্ত মৌলিক সংখ্যামনে রাখার সহজ উপায়ঃ
শর্টকাট :- 44 -22 -322-321
★1থেকে100পর্যন্ত মৌলিক সংখ্যা=25টি
★1থেকে10পর্যন্ত মৌলিক সংখ্যা=4টি 2,3,5,7
★11থেকে20পর্যন্ত মৌলিক সংখ্যা=4টি 11,13,17,19
★21থেকে30পর্যন্ত মৌলিক সংখ্যা=2টি 23,29
★31থেকে40পর্যন্ত মৌলিক সংখ্যা=2টি 31,37
★41থেকে50পর্যন্ত মৌলিক সংখ্যা=3টি 41,43,47
★51থেকে 60পর্যন্ত মৌলিক সংখ্যা=2টি 53,59
★61থেকে70পর্যন্ত মৌলিক সংখ্যা=2টি 61,67
★71থেকে80 পর্যন্ত মৌলিক সংখ্যা=3টি 71,73,79
★81থেকে 90পর্যন্ত মৌলিক সংখ্যা=2টি 83,89
★91থেকে100পর্যন্ত মৌলিক সংখ্যা=1টি 97
1-100 পর্যন্ত মৌলিক সংখ্যা 25 টিঃ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
1-100পর্যন্ত মৌলিক সংখ্যার যোগফল
1060।
1.কোন কিছুর
গতিবেগ= অতিক্রান্ত দূরত্ব/সময়
2.অতিক্রান্ত দূরত্ব = গতিবেগ×সময়
3.সময়= মোট দূরত্ব/বেগ
4.স্রোতের অনুকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ + স্রোতের গতিবেগ।
5.স্রোতের প্রতিকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ - স্রোতের গতিবেগ
সরল সুদ
যদি আসল=P, সময়=T, সুদের হার=R, সুদ-আসল=A হয়, তাহলে
1.সুদের পরিমাণ= PRT/100
2.আসল= 100×সুদ-আসল(A)/100+TR
নৌকার গতি স্রোতের অনুকূলে ঘন্টায় 10 কি.মি. এবং স্রোতের প্রতিকূলে 2 কি.মি.। স্রোতের বেগ কত?
★টেকনিক-
স্রোতের বেগ = (স্রোতের অনুকূলে নৌকার বেগ - স্রোতের প্রতিকূলে নৌকার বেগ) /2
= (10 - 2)/2=
= 4 কি.মি.
একটি নৌকা স্রোতের অনুকূলে ঘন্টায় 8 কি.মি.এবং স্রোতের প্রতিকূলে ঘন্টায় 4 কি.মি.
যায়। নৌকার বেগ কত?
★ টেকনিক-
নৌকার বেগ = (স্রোতের অনুকূলে নৌকার বেগ+স্রোতের প্রতিকূলে নৌকার বেগ)/2
= (8 + 4)/2
=6 কি.মি.
নৌকা ও স্রোতের বেগ ঘন্টায় যথাক্রমে 10 কি.মি. ও 5 কি.মি.। নদীপথে 45 কি.মি. পথ একবার গিয়ে ফিরে আসতে কত সময় লাগবে?
টেকনিক-
★মােট সময় = [(মােট দূরত্ব/ অনুকূলে বেগ) + (মােট দূরত্ব/প্রতিকূলে বেগ)]
উত্তর:স্রোতের অনুকূলে নৌকারবেগ = (10+5) = 15 কি.মি.
স্রোতের প্রতিকূলে নৌকার বেগ = (10-5) = 5কি.মি.
[(45/15) +(45/5)]
= 3+9
=12 ঘন্টা
★সমান্তর ধারার ক্রমিক সংখ্যার যোগফল-
(যখন সংখ্যাটি1 থেকে শুরু)1+2+3+4+......+n হলে এরূপ ধারার সমষ্টি= [n(n+1)/2]
n=শেষ সংখ্যা বা পদ সংখ্যা s=যোগফল
প্রশ্নঃ 1+2+3+....+100 =?
সমাধানঃ[n(n+1)/2]
= [100(100+1)/2]
= 5050
For
Class VI Click Here
For Class VII Click Here
For Class VIII Click Here
For Class IX Click Here
For Class X Click Here
For Class V Click Here
For Class VI Click Here
For
Class VII Click Here
For
Class VIII Click Here
For
Class IX Click Here
For
Class X Click Here
For
Class V Click Here
প্রথম n পদের বর্গের সমষ্টি
S= [n(n+1)2n+1)/6]
(যখন 1² + 2²+ 3² + 4²........ +n²)
প্রশ্নঃ(1² + 3²+ 5² + ....... +31²) সমান কত?
সমাধানঃ S=[n(n+1)2n+1)/6]
= [31(31+1)2×31+1)/6]
=31
★সমান্তর ধারার ঘনযোগ পদ্ধতির ক্ষেত্রে-
প্রথম n পদের ঘনের সমষ্টি S= [n(n+1)/2]2
(যখন 1³+2³+3³+.............+n³)
প্রশ্নঃ1³+2³+3³+4³+…………+10³=?
সমাধানঃ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
★পদ সংখ্যা ও পদ সংখ্যার সমষ্টি নির্নয়ের ক্ষেত্রেঃ
পদ সংখ্যা N= [(শেষ পদ – প্রথম পদ)/প্রতি পদে বৃদ্ধি] +1
প্রশ্নঃ5+10+15+…………+50=?
সমাধানঃ পদসংখ্যা = [(শেষ পদ – প্রথমপদ)/প্রতি পদে বৃদ্ধি]+1
= [(50 – 5)/5] + 1
=10
সুতরাং পদ সংখ্যার সমষ্টি
= [(5 + 50)/2] ×10
= 275
★ n তম পদ=a + (n-1)d
এখানে, n =পদসংখ্যা, a = 1ম পদ, d= সাধারণ অন্তর
প্রশ্নঃ 5+8+11+14+.......ধারাটির কোন পদ 302?
সমাধানঃ ধরি, n তম পদ =302
বা, a + (n-1)d=302
বা, 5+(n-1)3 =302
বা, 3n=300
বা, n=100
★6)সমান্তর ধারার ক্রমিক বিজোড় সংখ্যার যোগফল-S=M² এখানে,M=মধ্যেমা=(1ম সংখ্যা+শেষ সংখ্যা)/2
প্রশ্নঃ1+3+5+.......+19=কত?
সমাধানঃ S=M²
={(1+19)/2}²
=(20/2)²
=100
বর্গ
(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
নিয়ম-যতগুলো 1 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে 1 থেকে শুরু করে পর পর সেই সংখ্যা পর্যন্ত লিখতে হবে এবং তারপর সেই সংখ্যার পর থেকে অধঃক্রমে পরপর সংখ্যাগুলো লিখে 1 সংখ্যায় শেষ করতে হবে।
(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
যতগুলি 3 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 9 এবং 9 এর বাঁদিকে তার চেয়ে (যতগুলো 3 থাকবে) একটি কম সংখ্যক 8, তার পর বাঁদিকে একটি 0 এবং বাঁদিকে 8 এর সমসংখ্যক 1 বসবে।
(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
যতগুলি 6 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 6 এবং 6 এর বাঁদিকে তার চেয়ে (যতগুলো 6 থাকবে) একটি কম সংখ্যক 5, তার পর বাঁদিকে একটি 3 এবং বাঁদিকে 5 এর সমসংখ্যক 4 বসবে।
(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
যতগুলি 9 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 1 এবং 1 এর বাঁদিকে তার চেয়ে (যতগুলো 9 থাকবে) একটি কম সংখ্যক 0, তার পর বাঁদিকে একটি 8 এবং বাঁদিকে 0 এর সমসংখ্যক 9 বসবে।
জনক≠Father
1)Numerology (সংখ্যাতত্ত্ব)- Pythagoras(পিথাগোরাস)
2) Geometry(জ্যামিতি)- Euclid(ইউক্লিড)
3) Calculus(ক্যালকুলাস)- Newton(নিউটন)
4) Matrix(ম্যাট্রিক্স) - Arthur Cayley(অর্থার ক্যালে)
5)Trigonometry(ত্রিকোণমিতি)Hipparchus(হিপ্পারচাস)
6) Arithmetic(পাটিগণিত) Brahmagupta(ব্রহ্মগুপ্ত)
7) Algebra(বীজগণিত)- Muhammad ibn Musa al-Khwarizmi(মােহাম্মদ মুসা আল খারিজমী)
Logarithm(লগারিদম)- John Napier(জন নেপিয়ার)
9) Set theory(সেট তত্ত্ব)- George Cantor(জর্জ ক্যান্টর)
10) Zero(শূন্য)- Brahmagupta(ব্রহ্মগুপ্ত)
অঙ্কের ইংরেজি শব্দ
পাটিগণিত ও পরিমিতি
অঙ্ক-Digit, অনুপাত-Ratio, মৌলিক সংখ্যা—Prime number, পূর্ণবর্গ-Perfect square,উৎপাদক-Factor,ক্রমিক সমানুপাতী—Continued proportion, ক্রয়মূল্য -Cost price, ক্ষতি-Loss, গড়-Average, গতিবেগ-Velocity, গুণফল-Product, গ,সা,গু-Highest Common Factor, ঘাত-Power, ঘনমূল—Cube root, ঘনক-Cube, ঘনফল-Volume, পূর্নসংখ্যা-Integer, চাপ-Arc, চোঙ-Cylinder, জ্যা-Chord, জোড় সংখ্যা-Even number, ধ্রুবক-Constant, পরিসীমা-Perimeter, বাস্তব-Real, বর্গমূল-Square root, ব্যস্ত অনুপাত—Inverse ratio, বিজোড়সংখ্যা—Odd number, বিক্রয়মূল্য -Selling price, বীজগণিত—Algebra, মূলদ Rational, মধ্য সমানুপাতী -Mean proportional, যােগফল=Sum
ল,সা,গু-Lowest Common Multiple, লব-Numerator, শতকরা-Percentage, সমানুপাত-Proportion, সমানুপাতী-Proportional, সুদ-Interest, হর-Denominator,
জ্যামিতি
অতিভূজ—Hypotenuse, অন্তঃকোণ-Internal angle, অর্ধবৃত্ত-Semi-circle, অন্ত ব্যাসার্ধ-In-radius, আয়তক্ষেত্র-Rectangle, উচ্চতা-Height, কর্ণ–Diagonal, কোণ-Angle, কেন্দ্র-Centre, গােলক-Sphere, চতুর্ভুজ-Quadrilateral, চোঙ-Cylinder,জ্যামিতি-Geometry,দৈর্ঘ্য-Length, পঞ্চভূজ -Pentagon, প্রস্থ-Breadth
পূরককোন-Complementary angles, বাহু-Side, বৃত্ত-Circle, ব্যাসার্ধ-Radius, ব্যাস-Diameter, বহুভূজ-Polygon, বর্গক্ষেত্র—Square, বহি:স্থ External, শঙ্কু-Cone, সমকোণ-Right angle, সমবাহু ত্রিভূজ-Equilateral triangle, অসমবাহু ত্রিভূজ—Scalene triangle, সমদ্বিবাহু ত্রিভূজ-isosceles Triangle,সমকোণী ত্রিভুজ Right angled triangle, সূক্ষ্মকোণী-Acute angled triangle, স্থূলকোণী ত্রিভুজ Obtuse angled triangle, সমান্তরাল—Parallel, সরলরেখা—Straight line, সম্পূরক কোণ—Supplementary angles, সদৃশকোণী-Equiangular
রোমান সংখ্যা≠ Roman numerals )
1:I
2: II
3: III
4: IV
5: V
6: VI
7: VII
8: VIII
9: IX
10: X
11: XI
12: XII
13: XIII
14: XIV
15: XV
16: XVI
17: XVII
18: XVIII
19: XIX
20: XX,30: XXX,40: XL,50: L,60: LX,70: LXX,80: LXXX
,90: XC,100: C,200: CC,300: CCC,400: CD,500: D,600: DC
, 700: DCC,800: DCCC,900: CM,1000:M
1. জোড় সংখ্যা + জোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 2 + 6 = 8.
2. জোড় সংখ্যা + বিজোড় সংখ্যা =
বিজোড় সংখ্যা।
যেমনঃ 6 + 7 = 13.
3. বিজোড় সংখ্যা + বিজোড় সংখ্যা =
জোড় সংখ্যা।
যেমনঃ 3 + 5 = 8.
4. জোড় সংখ্যা × জোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 6 × 8 = 48.
5.জোড় সংখ্যা × বিজোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 6 × 7 = 42
6.বিজোড় সংখ্যা × বিজোড় সংখ্যা =
বিজোড় সংখ্যা।
যেমনঃ 3 × 9 = 27
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে ভাগ করার একটি effective টেকনিক!
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 5 দিয়ে ভাগ করার একটি effective টেকনিক
1. 13/5= 2.6 (ক্যালকুলেটর ছাড়া মাত্র ৩ সেকেন্ডে এটি সমাধান করা যায়)
★টেকনিকঃ
5 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 2 দিয়ে গুণ করুন তারপর ডানদিক থেকে 1 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ!!! 13*2=26, তারপর থেকে 1 ঘর আগে দশমিক বসিয়ে দিলে 2.6 ।
2. 213/5=42.6 (213*2=426)
0.03/5= 0.006 (0.03*2=0.06 যার একঘর আগে দশমিক বসালে হয় 0.006) 333,333,333/5= 66,666,666.6 (এই গুলা করতে আবার ক্যালকুলেটর লাগে না কি!)
3. 12,121,212/5= 2,424,242.4
এবার নিজে ইচ্ছেমত 5 দিয়ে যে কোন সংখ্যাকে ভাগ করে দেখুন
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 25 দিয়ে ভাগ করার একটি effective টেকনিক
1. 13/25=0.52 (ক্যালকুলেটর ছাড়া এটিও সমাধান করা যায়)
★টেকনিকঃ
25 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 4 দিয়ে গুণ করুন তারপর ডানদিক থেকে 2 ঘর আগে দশমিক বসিয়ে দিন। 13*4=52, তারপর থেকে 2 ঘর আগে দশমিক বসিয়ে দিলে 0.52 ।
02. 210/25 = 8.40
03. 0.03/25 = 0.0012
04. 222,222/25 = 8,888.88
05. 13,121,312/25 = 524,852.48
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 125 দিয়ে ভাগ করার একটি effective টেকনিক
01. 7/125 = 0.056
★টেকনিকঃ
125 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 8 দিয়ে গুণ করুন তারপর ডানদিক থেকে 3 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ! 7*8=56, তারপর থেকে 3 ঘর আগে দশমিক বসিয়ে দিলে 0.056 ।
02. 111/125 = 0.888
03. 600/125 = 4.800
আসুন সহজে করি
টপিকঃ 10 সেকেন্ডে বর্গমূল নির্ণয়।
বিঃদ্রঃ যে সংখ্যাগুলোর বর্গমূল 1 থেকে 99 এর মধ্যে এই পদ্ধতিতে তাদের বের করা যাবে খুব সহজেই। প্রশ্নে অবশ্যই পূর্ণবর্গ সংখ্যা থাকা লাগবে। অর্থাৎ উত্তর যদি দশমিক ভগ্নাংশ আসে তবে এই পদ্বতি কাজে আসবেনা।
অবশ্যই মনোযোগ দিয়ে পড়তে হবে এবং প্র্যাকটিস করতে হবে। নয়ত ভুলে যাবেন।
তবে আসুন শুরু করা যাক। শুরুতে 1 থেকে 9 পর্যন্ত সংখ্যার বর্গ মুখস্থ করে নিই। আশা করি এগুলো সবাই জানেন। সুবিধার জন্যে আমি নিচে লিখে দিচ্ছি-
1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81
এখানে প্রত্যেকটা বর্গ সংখ্যার দিকে খেয়াল করলে দেখবেন, সবার শেষের অংকটির ক্ষেত্রে -
★1 আর 9 এর বর্গের শেষ অংক মিল আছে (1, 81)
★2 আর 8 এর বর্গের শেষ অংক মিল আছে(4, 64)
★3 আর 7 এর বর্গের শেষ অংক মিল আছে (9, 49);
★4 আর 6 এর বর্গের শেষ অংক মিল আছে(16, 36);
এবং 5 একা frown emoticon
এদ্দুর পর্যন্ত বুঝতে যদি কোন সমস্যা থাকে তবে আবার পড়ে নিন।
উদাহরণ:- 576 এর বর্গমূল নির্ণয় করুন।
প্রথম ধাপঃ যে সংখ্যার বর্গমূল নির্ণয় করতে হবে তার এককের ঘরের অংকটি দেখবেন। এক্ষেত্রে তা হচ্ছে '6' ।
দ্বিতীয় ধাপঃ উপরের লিস্ট থেকে সে সংখ্যার বর্গের শেষ অংক 6 তাদের নিবেন। এক্ষেত্রে 4 এবং 6 । আবার বলি, খেয়াল করুন- 4 এবং 6 এর বর্গ যথাক্রমে 16 এবং 36; যাদের এককের ঘরের অংক কিনা '6' । বুঝতে পেরেছেন? না বুঝলে আবার পড়ে দেখুন।
তৃতীয় ধাপঃ 4 / 6 লিখে রাখুন খাতায়। (আমরা উত্তরের এককের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 4 অথবা 6; কিন্তু কোনটা? এর উত্তর পাবেন অষ্টম ধাপে, পড়তে থাকুন ...)
চতুর্থ ধাপঃ প্রশ্নের একক আর দশকের অংক বাদ দিয়ে বাকি অংকের দিকে তাকান। এক্ষেত্রে এটি হচ্ছে 5 ।
পঞ্চম ধাপঃ উপরের লিস্ট থেকে 5 এর কাছাকাছি যে বর্গ সংখ্যাটি আছে তার বর্গমূলটা নিন। এক্ষেত্রে 4, যা কিনা 2 এর বর্গ। (আমরা উত্তরের দশকের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 2 )
ষষ্ঠ ধাপঃ 2 এর সাথে তার পরের সংখ্যা গুন করুন। অর্থাৎ 2*3=6
সপ্তম ধাপঃ চতুর্থ ধাপে পাওয়া সংখ্যাটা (5) ষষ্ঠ ধাপে পাওয়া সংখ্যার (6) চেয়ে ছোট নাকি বড় দেখুন। ছোট হলে তৃতীয় ধাপে পাওয়া সংখ্যার ছোটটি নেব, বড় হলে বড়টি। (বুঝতে পেরেছেন? নয়ত আবার পড়ুন)
অষ্টম ধাপঃ আমাদের উদাহরণের ক্ষেত্রে 5 হচ্ছে 6 এর ছোট, তাই আমরা 4 / 6 মধ্যে ছোট সংখ্যা অর্থাৎ 4 নেব।
নবম ধাপঃ মনে আছে, পঞ্চম ধাপে দশকের ঘরের অংক পেয়েছিলাম 2 এবার পেয়েছি এককের ঘরের অংক 4 । তাই উত্তর হবে 24
কঠিন মনে হচ্ছে? একদমই না, কয়েকটা প্র্যাকটিস করে দেখুন। আমার মতে খুব বেশি সময় লাগার কথা না।
উদাহরণ:- 4225 এর বর্গমূল বের করুন।
মনে আছে 5 যে একা ছিল? সে একা থাকায় আপনার কাজ কিন্তু অনেক সোজা হয়ে গেছে। দেখুন কেনো প্রশ্নের শেষ অংক 5 হওয়ায় উত্তরের এককের ঘরের অংক হবে অবশ্যই 5 ।
- প্রশ্নের একক ও দশকের ঘরের অংক বাদ দিয়ে দিলে বাকি থাকে 42 ।
1)Numerology (সংখ্যাতত্ত্ব)- Pythagoras(পিথাগোরাস)
2) Geometry(জ্যামিতি)- Euclid(ইউক্লিড)
3) Calculus(ক্যালকুলাস)- Newton(নিউটন)
4) Matrix(ম্যাট্রিক্স) - Arthur Cayley(অর্থার ক্যালে)
5)Trigonometry(ত্রিকোণমিতি)Hipparchus(হিপ্পারচাস)
6) Arithmetic(পাটিগণিত) Brahmagupta(ব্রহ্মগুপ্ত)
7) Algebra(বীজগণিত)- Muhammad ibn Musa al-Khwarizmi(মােহাম্মদ মুসা আল খারিজমী)
Logarithm(লগারিদম)- John Napier(জন নেপিয়ার)
9) Set theory(সেট তত্ত্ব)- George Cantor(জর্জ ক্যান্টর)
10) Zero(শূন্য)- Brahmagupta(ব্রহ্মগুপ্ত)
অঙ্কের ইংরেজি শব্দ
পাটিগণিত ও পরিমিতি
অঙ্ক-Digit, অনুপাত-Ratio, মৌলিক সংখ্যা—Prime number, পূর্ণবর্গ-Perfect square,উৎপাদক-Factor,ক্রমিক সমানুপাতী—Continued proportion, ক্রয়মূল্য -Cost price, ক্ষতি-Loss, গড়-Average, গতিবেগ-Velocity, গুণফল-Product, গ,সা,গু-Highest Common Factor, ঘাত-Power, ঘনমূল—Cube root, ঘনক-Cube, ঘনফল-Volume, পূর্নসংখ্যা-Integer, চাপ-Arc, চোঙ-Cylinder, জ্যা-Chord, জোড় সংখ্যা-Even number, ধ্রুবক-Constant, পরিসীমা-Perimeter, বাস্তব-Real, বর্গমূল-Square root, ব্যস্ত অনুপাত—Inverse ratio, বিজোড়সংখ্যা—Odd number, বিক্রয়মূল্য -Selling price, বীজগণিত—Algebra, মূলদ Rational, মধ্য সমানুপাতী -Mean proportional, যােগফল=Sum
ল,সা,গু-Lowest Common Multiple, লব-Numerator, শতকরা-Percentage, সমানুপাত-Proportion, সমানুপাতী-Proportional, সুদ-Interest, হর-Denominator,
জ্যামিতি
অতিভূজ—Hypotenuse, অন্তঃকোণ-Internal angle, অর্ধবৃত্ত-Semi-circle, অন্ত ব্যাসার্ধ-In-radius, আয়তক্ষেত্র-Rectangle, উচ্চতা-Height, কর্ণ–Diagonal, কোণ-Angle, কেন্দ্র-Centre, গােলক-Sphere, চতুর্ভুজ-Quadrilateral, চোঙ-Cylinder,জ্যামিতি-Geometry,দৈর্ঘ্য-Length, পঞ্চভূজ -Pentagon, প্রস্থ-Breadth
পূরককোন-Complementary angles, বাহু-Side, বৃত্ত-Circle, ব্যাসার্ধ-Radius, ব্যাস-Diameter, বহুভূজ-Polygon, বর্গক্ষেত্র—Square, বহি:স্থ External, শঙ্কু-Cone, সমকোণ-Right angle, সমবাহু ত্রিভূজ-Equilateral triangle, অসমবাহু ত্রিভূজ—Scalene triangle, সমদ্বিবাহু ত্রিভূজ-isosceles Triangle,সমকোণী ত্রিভুজ Right angled triangle, সূক্ষ্মকোণী-Acute angled triangle, স্থূলকোণী ত্রিভুজ Obtuse angled triangle, সমান্তরাল—Parallel, সরলরেখা—Straight line, সম্পূরক কোণ—Supplementary angles, সদৃশকোণী-Equiangular
রোমান সংখ্যা≠ Roman numerals )
1:I
2: II
3: III
4: IV
5: V
6: VI
7: VII
8: VIII
9: IX
10: X
11: XI
12: XII
13: XIII
14: XIV
15: XV
16: XVI
17: XVII
18: XVIII
19: XIX
20: XX,30: XXX,40: XL,50: L,60: LX,70: LXX,80: LXXX
,90: XC,100: C,200: CC,300: CCC,400: CD,500: D,600: DC
, 700: DCC,800: DCCC,900: CM,1000:M
1. জোড় সংখ্যা + জোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 2 + 6 = 8.
2. জোড় সংখ্যা + বিজোড় সংখ্যা =
বিজোড় সংখ্যা।
যেমনঃ 6 + 7 = 13.
3. বিজোড় সংখ্যা + বিজোড় সংখ্যা =
জোড় সংখ্যা।
যেমনঃ 3 + 5 = 8.
4. জোড় সংখ্যা × জোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 6 × 8 = 48.
5.জোড় সংখ্যা × বিজোড় সংখ্যা = জোড়
সংখ্যা।
যেমনঃ 6 × 7 = 42
6.বিজোড় সংখ্যা × বিজোড় সংখ্যা =
বিজোড় সংখ্যা।
যেমনঃ 3 × 9 = 27
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে ভাগ করার একটি effective টেকনিক!
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 5 দিয়ে ভাগ করার একটি effective টেকনিক
1. 13/5= 2.6 (ক্যালকুলেটর ছাড়া মাত্র ৩ সেকেন্ডে এটি সমাধান করা যায়)
★টেকনিকঃ
5 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 2 দিয়ে গুণ করুন তারপর ডানদিক থেকে 1 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ!!! 13*2=26, তারপর থেকে 1 ঘর আগে দশমিক বসিয়ে দিলে 2.6 ।
2. 213/5=42.6 (213*2=426)
0.03/5= 0.006 (0.03*2=0.06 যার একঘর আগে দশমিক বসালে হয় 0.006) 333,333,333/5= 66,666,666.6 (এই গুলা করতে আবার ক্যালকুলেটর লাগে না কি!)
3. 12,121,212/5= 2,424,242.4
এবার নিজে ইচ্ছেমত 5 দিয়ে যে কোন সংখ্যাকে ভাগ করে দেখুন
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 25 দিয়ে ভাগ করার একটি effective টেকনিক
1. 13/25=0.52 (ক্যালকুলেটর ছাড়া এটিও সমাধান করা যায়)
★টেকনিকঃ
25 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 4 দিয়ে গুণ করুন তারপর ডানদিক থেকে 2 ঘর আগে দশমিক বসিয়ে দিন। 13*4=52, তারপর থেকে 2 ঘর আগে দশমিক বসিয়ে দিলে 0.52 ।
02. 210/25 = 8.40
03. 0.03/25 = 0.0012
04. 222,222/25 = 8,888.88
05. 13,121,312/25 = 524,852.48
ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 125 দিয়ে ভাগ করার একটি effective টেকনিক
01. 7/125 = 0.056
★টেকনিকঃ
125 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 8 দিয়ে গুণ করুন তারপর ডানদিক থেকে 3 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ! 7*8=56, তারপর থেকে 3 ঘর আগে দশমিক বসিয়ে দিলে 0.056 ।
02. 111/125 = 0.888
03. 600/125 = 4.800
আসুন সহজে করি
টপিকঃ 10 সেকেন্ডে বর্গমূল নির্ণয়।
বিঃদ্রঃ যে সংখ্যাগুলোর বর্গমূল 1 থেকে 99 এর মধ্যে এই পদ্ধতিতে তাদের বের করা যাবে খুব সহজেই। প্রশ্নে অবশ্যই পূর্ণবর্গ সংখ্যা থাকা লাগবে। অর্থাৎ উত্তর যদি দশমিক ভগ্নাংশ আসে তবে এই পদ্বতি কাজে আসবেনা।
অবশ্যই মনোযোগ দিয়ে পড়তে হবে এবং প্র্যাকটিস করতে হবে। নয়ত ভুলে যাবেন।
তবে আসুন শুরু করা যাক। শুরুতে 1 থেকে 9 পর্যন্ত সংখ্যার বর্গ মুখস্থ করে নিই। আশা করি এগুলো সবাই জানেন। সুবিধার জন্যে আমি নিচে লিখে দিচ্ছি-
1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81
এখানে প্রত্যেকটা বর্গ সংখ্যার দিকে খেয়াল করলে দেখবেন, সবার শেষের অংকটির ক্ষেত্রে -
★1 আর 9 এর বর্গের শেষ অংক মিল আছে (1, 81)
★2 আর 8 এর বর্গের শেষ অংক মিল আছে(4, 64)
★3 আর 7 এর বর্গের শেষ অংক মিল আছে (9, 49);
★4 আর 6 এর বর্গের শেষ অংক মিল আছে(16, 36);
এবং 5 একা frown emoticon
এদ্দুর পর্যন্ত বুঝতে যদি কোন সমস্যা থাকে তবে আবার পড়ে নিন।
উদাহরণ:- 576 এর বর্গমূল নির্ণয় করুন।
প্রথম ধাপঃ যে সংখ্যার বর্গমূল নির্ণয় করতে হবে তার এককের ঘরের অংকটি দেখবেন। এক্ষেত্রে তা হচ্ছে '6' ।
দ্বিতীয় ধাপঃ উপরের লিস্ট থেকে সে সংখ্যার বর্গের শেষ অংক 6 তাদের নিবেন। এক্ষেত্রে 4 এবং 6 । আবার বলি, খেয়াল করুন- 4 এবং 6 এর বর্গ যথাক্রমে 16 এবং 36; যাদের এককের ঘরের অংক কিনা '6' । বুঝতে পেরেছেন? না বুঝলে আবার পড়ে দেখুন।
তৃতীয় ধাপঃ 4 / 6 লিখে রাখুন খাতায়। (আমরা উত্তরের এককের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 4 অথবা 6; কিন্তু কোনটা? এর উত্তর পাবেন অষ্টম ধাপে, পড়তে থাকুন ...)
চতুর্থ ধাপঃ প্রশ্নের একক আর দশকের অংক বাদ দিয়ে বাকি অংকের দিকে তাকান। এক্ষেত্রে এটি হচ্ছে 5 ।
পঞ্চম ধাপঃ উপরের লিস্ট থেকে 5 এর কাছাকাছি যে বর্গ সংখ্যাটি আছে তার বর্গমূলটা নিন। এক্ষেত্রে 4, যা কিনা 2 এর বর্গ। (আমরা উত্তরের দশকের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 2 )
ষষ্ঠ ধাপঃ 2 এর সাথে তার পরের সংখ্যা গুন করুন। অর্থাৎ 2*3=6
সপ্তম ধাপঃ চতুর্থ ধাপে পাওয়া সংখ্যাটা (5) ষষ্ঠ ধাপে পাওয়া সংখ্যার (6) চেয়ে ছোট নাকি বড় দেখুন। ছোট হলে তৃতীয় ধাপে পাওয়া সংখ্যার ছোটটি নেব, বড় হলে বড়টি। (বুঝতে পেরেছেন? নয়ত আবার পড়ুন)
অষ্টম ধাপঃ আমাদের উদাহরণের ক্ষেত্রে 5 হচ্ছে 6 এর ছোট, তাই আমরা 4 / 6 মধ্যে ছোট সংখ্যা অর্থাৎ 4 নেব।
নবম ধাপঃ মনে আছে, পঞ্চম ধাপে দশকের ঘরের অংক পেয়েছিলাম 2 এবার পেয়েছি এককের ঘরের অংক 4 । তাই উত্তর হবে 24
কঠিন মনে হচ্ছে? একদমই না, কয়েকটা প্র্যাকটিস করে দেখুন। আমার মতে খুব বেশি সময় লাগার কথা না।
উদাহরণ:- 4225 এর বর্গমূল বের করুন।
মনে আছে 5 যে একা ছিল? সে একা থাকায় আপনার কাজ কিন্তু অনেক সোজা হয়ে গেছে। দেখুন কেনো প্রশ্নের শেষ অংক 5 হওয়ায় উত্তরের এককের ঘরের অংক হবে অবশ্যই 5 ।
- প্রশ্নের একক ও দশকের ঘরের অংক বাদ দিয়ে দিলে বাকি থাকে 42 ।
- 42 এর সবচেয়ে কাছের পূর্ণবর্গ সংখ্যা হচ্ছে 36, যার বর্গমূল হচ্ছে 6 । তাই উত্তর হচ্ছে 65
No comments:
Post a Comment